Chapter 26: Amino Acids, Peptides, Proteins, and Nucleic Acids

Aspartame, a dipeptide

Amino Acids

In nature, the most common representatives are 2-amino acids (α -amino acids) with the general formula RCH(NH₂)COOH.

R = alkyl, acyl, amino, hydroxy, mercapto, sulfide, carboxy, guanidino, or imidazolyl groups Amino acids give rise to polyamides: Polypeptides (proteins, enzymes)

For proteins, $n \ge 8000$ and MW > 1,000,000. Proteins are crucial for transport (O_2 , hemoglobin), energy storage, catalysis, control of reactions, template for RNA/DNA action, antibodies, etc. More than 500 natural amino acids known

 Among the 20 main amino acids, 8 cannot be synthesized by the body (essential amino acids)

Names: We use common names. a-Stereocenter usually *S* (or, old nomenclature, L, from Lglyceraldehyde)

TABLE 26-1 Natural (25)-Amino Acids

(COOH
H_2N —	H—
	R

R	Name	Three-letter code	One-letter code	pK _a of α-COOH	pK _a of α- ⁺ NH ₃	p <i>K</i> _a of acidic function in R	Isoelectric point, p <i>I</i>
Н	Glycine	Gly	G	2.3	9.6		6.0
Alkyl group							
CH ₃	Alanine	Ala	А	2.3	9.7	_	6.0
$CH(CH_3)_2$	Valine ^{<i>a</i>}	Val	V	2.3	9.6		6.0
$CH_2CH(CH_3)_2$	Leucine ^a	Leu	L	2.4	9.6	_	6.0
$\operatorname{CHCH}_{2}\operatorname{CH}_{3}(S)$	Isoleucine ^a	Ile	Ι	2.4	9.6	—	6.0
CH ₃							
H ₂ C	Phenylalanine ^a	Phe	F	1.8	9.1	—	5.5
$HN - H - H - CH_2$	Proline	Pro	Р	2.0	10.6	_	6.3

Hydroxy containing							
CH ₂ OH	Serine	Ser	S	2.2	9.2	_	5.7
CHOH (R)	Threonine ^a	Thr	Т	2.1	9.1	—	5.6
CH ₃							
H ₂ C—OH	Tyrosine	Tyr	Y	2.2	9.1	10.1	5.7
Amino containing							
O II							
CH_2CNH_2 .	Asparagine	Asn	Ν	2.0	8.8	—	5.4
O II							
CH ₂ CH ₂ CNH ₂	Glutamine	Gln	Q	2.2	9.1	—	5.7
$(CH_2)_4NH_2$	Lysine ^a	Lys	Κ	2.2	9.0	10.5^{c}	9.7
NH II							
(CH ₂) ₃ NHCNH ₂	Arginine ^a	Arg	R	2.2	9.0	12.5 ^c	10.8

R	Name	Three-letter code	One-letter code	pK _a of α-COOH	$pK_a of \alpha - NH_3$	pK_a of acidic function in R	Isoelectric point, pI
Amino containing (conti	nued)						
H ₂ C N H	Tryptophan ^a	Trp	W	2.8	9.4		5.9
H ₂ C NH	Histidine ^a	His	Н	1.8	9.2	6.1 ^{<i>c</i>}	7.6
Mercapto or sulfide con	taining 🗾 🚽 U	lsed in reversib	le disulfide br	ridging			
CH ₂ SH	Cysteine ^d	Cys	С	2.0	10.3	8.2	5.1
CH ₂ CH ₂ SCH ₃	Methionine ^a	Met	М	2.3	9.2		5.7
Carboxy containing							
CH ₂ COOH	Aspartic acid	Asp	D	1.9	9.6	3.7	2.8
CH ₂ CH ₂ COOH	Glutamic acid	Glu	Е	2.2	9.7	4.3	3.2
^{<i>a</i>} Essential amino acids. ^{<i>b</i>} Enti CH ₂ SH substituent has highe	The structure. ${}^{c}pK_{a}$ of the priority than the C	^c conjugate acid. ⁴ COOH group.	^d The stereocente	er is R becaus	e the Mor glut	nosodium tamate	

Amino acids are acidic and basic: Exist as zwitterions

 $H_3 \dot{N}CH_2COO$ -Glycine as a zwitterion

Structure depends on pH:

$$H_{3} \overset{+}{\text{NCH}}_{2} \text{COOH} + H_{2} \text{O} \iff H_{3} \overset{+}{\text{NCH}}_{2} \text{COO}^{-} + H_{2} \overset{+}{\text{OH}} H_{2} \overset{+}{\text{OH}}$$

$$+ H_{2} \overset{+}{\text{OH}} H_{2} \overset{+}{\text{O$$

$$K_1 = \frac{[H_3NCH_2COO^-][H_2OH]}{[H_3NCH_2COOH]} = 10^{-2.3}$$

Compare pK_a $CH_3COOH = 4.74$; the $-NH_3^+$ group acidifies

 $H_{3}^{+} \overset{+}{\text{NCH}_{2}\text{COO}^{-}} + H_{2}O \implies H_{2}\text{NCH}_{2}\text{COO}^{-} + H_{2}^{+} \overset{+}{\text{OH}}$ $pK_{a} = 9.6$ $K_{2} = \frac{[H_{2}\text{NCH}_{2}\text{COO}^{-}][H_{2}^{+} \overset{+}{\text{OH}}]}{[H_{3}^{+}\text{NCH}_{2}\text{COO}^{-}]} = 10^{-9.6}$

Cf. $pK_a CH_3 NH_3^+ = 10.62$; $-CO_2^-$ also acidifies, by induction

Isoelectric Point: When solution is charge neutral $[H_3 \overset{+}{N}CHCOOH] = [H_2 NCHCOO]$

At this point pH =
$$pI = \frac{pK_{a-COOH} + pK_{a-NH_2H}}{2}$$

Synthesis of Amino Acids

1. Hell-Volhard-Zelinsky, then Amination

Better: Gabriel Synthesis ($RX \rightarrow RNH_2$)

2. Gabriel Synthesis

When HCN is used in the presence of ammonia, e.g. NH_4CN or $NH_4CI/NaCN$, we get the corresponding amino cyanide:

Segovia Strecker

4. Synthesis of Enantiomerically Pure Amino Acids

Glutamic acid aminates other a-oxoacids by redox exchange:

c. Using Chiral Auxiliaries

Peptides

Amino acids form peptide bonds

Dimer = dipeptide, trimer = tripeptide, and so on. The chain is arranged in space by H bonding, electrostatic attractions, hydrophobichydrophilic interactions (with water), and rigidity of the amide bond.

Rigidity and planarity of the peptide bond

Rigid

R, R', R", etc. are called the side chains. All stereocenters are assumed to be *S*.

Names: Line up the amino acid names in sequence, from left to right, each ending in "yl", until reaching the terminus.

Glutathione

Not a typical peptide bond: Glutamic acid residue makes amide bond with the γ -carboxy group (γ -Glu).

Found in all living cells, particularly in the lens of the eye. Functions as a biological reducing agent by enzymatic oxidation of the cysteine mercapto unit to the disulfide-bridged dimer.

Gramicidine S: Antibiotic (Eye Infection)

Insulin: For diabetes. Disulfide bonds

The amino acid sequence is called the primary structure, the three dimensional arrangement is the secondary, tertary, and quaternary structure.

Secondary Structure: H-Bonding

Pleated Sheet Structure

Sheets defined by shaded areas

α - Helix

Right-handed spiral held by intramolecular H bonds

3.6 Amino acids per turn; repeat distance 5.4 Å

Tertiary Structure: Further folding, coiling, and aggregation. Denaturation is the breakdown of this structure.

> Example: Superhelix

Typical of fibrous proteins, such as myosin (in muscle), fibrin (in blood clots), and akeratin (in hair, nails, and wool).

Tertiary structure gives rise to pockets: Active sites or binding sites that provide perfect fit for substrates, e.g., drugs.

Example: Digestive enzyme chymotrypsin

Protein digestion = Amide bond hydrolysis

Four cooperative effects to facilitate proton shuttle

Peptide Hydrolysis in the Active Site of Chymotrypsin

Quaternary Structure: Aggregation of several units

Example: Hemoglobin

Protein (Polypeptide) Primary Structure Determination Amino Acid Sequencing

Break S-S bridges by oxidation → purify pieces

 $R^1-S-S-R^2 \longrightarrow R^1SO_3H + R^2SO_3H$

Purification is achieved by various forms of chromatography: Dialysis, gel-filtration, ion-exchange, electrophoresis, affinity chromatography.

Chromatography

Paper

Affinity

2. Amino Acid Analyzer

Used after hydrolysis of polypeptides to component amino acids (6 N HCl, 110°C, 24 h). Column chromatography separates and detects them.

Various amino acids

Integration gives relative amount of type of amino acid. Now we know composition. What about the sequence?

3. Amino Acid Sequencing: One by one a. Sanger: Degrade from amino terminal end

b. Edman degradation-leaves rest of chain intact, allows iterative procedure

All phenylthiohydantoins of amino acids are known. Edman degradation turns unreliable after ~50 amino acids (build up of impurities). Problem solved by chopping up large peptides selectively into smaller (< 50 amino acids) pieces using enzymes. Enzymatic Cleavage Followed by finding overlap sequences to establish connectivity in original Trypsin: Hydrolyzes only at carboxy end of Arg and Lys, e.g.: Trp-Glu-Arg ? Phe-Phe-Lys ? Ala-Val

Chymotrypsin: Hydrolyzes only at carboxy end of Phe, Trp, Tyr, e.g.: <u>Trp&Glu-Arg-Phe&Phe&Lys-Al</u>a-Val

Thermolysin: Hydrolyzes amino end of Leu, Ile, Val, e.g.: Trp-Glu-Arg-Phe-Phe-Lys-Ala 2 Val

Synthesis of Polypeptides

Protecting groups: Why? We need selectivity in building up the peptide sequence. Consider the synthesis of glycylalanine by dehydration of the component amino acids: H_2N C H_2N H_2N C H_2N H_2N C H_2N H_2N

 $\begin{array}{rcl} \text{Gly} &+ & \text{Ala} & \xrightarrow{\Delta} & \text{Gly-Gly} &+ & \text{Ala-Gly} &+ & \text{Gly-Ala} &+ & \text{Ala-Ala} &+ & \text{Gly-Gly-Ala} &+ & \text{Ala-Gly-Ala} &\text{etc.} \\ & & & & \text{Desired} \\ & & & \text{product} \end{array}$

Hence, amino end of Gly and carboxy end of Ala have to be protected.

a. Amino end protection with

Phenylmethoxycarbonyl (carbobenzoxy, Cbz)

b. Amino end protection with

Protection of the Amino Group in Amino Acids as the Boc Derivative

 $\xrightarrow{(CH_3CH_2)_3N} \xrightarrow{-CO_2,} \xrightarrow{-(CH_3)_3COH}$

Bis(1,1-dimethylethyl) dicarbonate (Di-*tert*-butyl dicarbonate) (CH₃)₃COCNHCHCOOH 70–100%

1,1-Dimethylethoxycarbonylamino acid (*tert*-Butoxycarbonylamino acid, Boc-amino acid)

Deprotection of Boc-Amino Acids (via tert-Bu cation)

c. Carboxy Protection: Esterification

Simple methyl or ethyl esters. Alternatively, to avoid base (or acid) hydrolysis, benzyl esters.

Formation of the amide bond for peptides uses a mild coupling reagent: Dicycloheylcarbodiimide (DCC) as a dehydrating species

Peptide Bond Formation with Dicyclohexylcarbodiimide

Mechanism:

1. Activation of carboxy group (recall activations to alkanoyl halides or anhydrides) of N-protected amino acid

Looks like an anhydride

2. Coupling with amino end of carboxy end protected amino acid to give dipeptide

Automation: Merrifield solid-phase peptide synthesis

Advantages: Robotic "custom made" assembly of any polypeptide; products on the polymer are isolated and purified by simple filtration and washing.

Robert B. Merrifield b. 1921

Early mile stone: 1966; Total synthesis of insulin with 51 amino acids; 5000 operations carried out in a few days. Modern extensions: Combinatorial chemistry and total synthesis of complex molecules on solid supports.

DNA and RNA: Natural Polymers Containing the Blueprint of Life

Life (in this context) is the synthesis of proteins, which run our (any) body. The information is stored in DNA: Deoxyribose nucleic acid

The information is "read" (expressed) with the help of RNA: Ribonucleic acid

Structure of Nucleic Acids

Example: DNA chain. Backbone is a polymer of the sugar linked by phosphate groups as a diester.

"Monomer" is called a nucleotide

The information lies in the sequence of the bases attached to the anomeric carbon: There are four bases.

Bases: All aromatic heterocycles

For RNA: C, A, G and

To visualize the aromaticity in the cyclic amides, formulate the dipolar resonance form, e.g. cytosine:

thymine

Naming the pieces:

Sugar-base compound: A nucleoside

Sugar-base-phosphate monomer piece of polymer: A nucleotide

Thymidylic acid

2'-Deoxycytidylic acid

DNA forms extraordinarily long chains (up to several centimeters) with molecular weights of as high as 150 billion. Like proteins, they adopt secondary and tertiary structures: Double helix!

Primary structure

Human chromosomes

Watson-Crick: Hydrogen bonding through complementary pairs: In DNA A-T, G-C (1:1 ratio)

Gives rise to double helix.....

View down the helical axis

Complementarity:

Replication of DNA

In humans 2.9 billion base pairs; error rate 1 in 10 billion!

Information storage: Peptides versus nucleic acids

Base sequence contains information for protein synthesis

$DNA \rightarrow mRNA \rightarrow polypeptide$

Messenger RNA

mRNA copies a piece of DNA to be used to construct a particular peptide; transfer RNA (tRNA) delivers the amino acids, and a catalyst (ribosome) puts the peptide together, following the blueprint: Three base sequences (codons) that translate into a specific amino acid.

Three base code (codon): # of combinations $4^3 = 64 \rightarrow$ more than enough for 20 amino acids

TABLE	26-3 Thr Use	ee-Base Code d in Protein S	for the Common ynthesis	n Amino Acids	
Amino acid	Base sequence	Amino acid	Base sequence	Amino acid	Base sequence
Ala (A)	GCA	His (H)	CAC	Ser (S)	AGC
	GCC		CAU		AGU
	GCG				UCA
	GCU	Ile (I)	AUA		UCG
			AUC		UCC
Arg (R)	AGA AGG		AUU		UCU
	CGA	Leu (L)	CUA	Thr (T)	ACA
	CGC		CUC		ACC
	CGG		CUG		ACG
	CGU		CUU		ACU
			UUA		
Asn (N)	AAC AAU		UUG	Trp (W)	UGG
		Lvs (K)	ААА	Tyr (Y)	UAC
Asp (D)	GAC		AAG		UAU
1 ()	GAU				
		Met (M)	AUG	Val (V)	GUA
Cys (C)	UGC				GUG
•	UGU	Phe (F)	UUU		GUC
			UUC		GUU
Gln (Q)	CAA				
	CAG	Pro (P)	CCA CCC	Chain initiation	AUG
Glu (E)	GAA		CCG	Chain termination	UGA
(GAG		CCU		UAA
					UAG
Gly (G)	GGA				
	GGC				
	GGG				
	GGU				

Genetechnology: A Revolution

The Human Genome

Deciphering the sequence of 2.9 billion base pairs

Contig Region	The region according to <u>NT 023089.13</u> (1)
JSNP	No ISNE TO Type Position in sequence Allele Compet
	1 TMS-IST087475 SNP 6634747 (View Integrated Man) C/A
SNP Home	2 INS-JST087474 SNP 6634990 (View Integrated Map) G/A (2)
Search	3 IMS-JST132151 SNP 6635574 (View Integrated Map) C/T
BLAT Genome	4 IHS-JST132150 SNP 6635669 (View Integrated Map) G/A
Search by HOWDY	
RIAST SND	6633681 TCCCCTTCCT GTGTCCATGT GATCTCATTG TTCAATTCCC ACCTATGAGT GAGAATATGC GGTGTTTGGT TTTTTGTTCT
<u>DENOT ONP</u>	6633761 TETEGATAGIT TACTEAGAAT GAACATEATC ITTCAATTEC CCCGATTTAC ATTTAAGCTC AGCCACTCAC TAGCTTETEG 6633841 CCTTEAGCAA CTTACTTTAC CACTCTEAGT CTTAATTTTA TCCTCTATCA AATGTEGATA AGAGTECCTC TECCTEGTTA
Search Example	6633921 GCTGAGCTGG GGGCAAGGAG TTGCTGGGGG AATTGGGGGT GGGGCTAGCA GGTGAAAGTG CTCAGTGAAT GGAAGCCATT
FTP Server	6634001 GARATOGIGA TAGATATI GAGATATI AL GALATI DI L'UCARATULTI AL ACTIVICA CI RAGALI AL TAGATATI AGONTAGI O 6634081 GARATUTTGA GAGUCTUTTG ARGUCCUCIAG ITITUTUCARA TICAGIGIAT ICIGITITAT ALIGUTATA GAGAATUT
XML Download	6634161 GGAGITIGIA CACIGIGGIA AACAIGAITG AAACGIGGIA AIGCITIAII GAAAAAICIG CIIIIIGGCI GGAIACAGIG 6634241 GCICACGCCI AIAAICCCAA CAIIIIGGGA CAACAAGGCA GGAAGAICAC IIGAGGICGA AGIIIGAGAC CAGCCIGAGC
	6634321 AACAGATTGA GACTTGGTCT CTACAAAATA ATAATAATAAT TAATAATAAG TGTGGTGGCA CATGCTTGTA GTCCCAGCTA
yword 👻	6634481 AGCCTGGGCA ACACAGCAAG AACCTGTCTC AAAAAATAAA ATTAAAATCA AAATCCACTT TTAGCTTAGA TATAATAAAT
	6634561 TAGTATAGAT GITACTGAGG ATGACATITG TACAAGAAAG TAAGATITAA AACCCAAATC AIITAAGATA GGATTACAGA 6634641 Aatgattatc iitaatiiti taaaaaa <mark>i</mark> tg tgcctgitic tigtitccta ag <u>atgcttaa titacccati tctgatgcga</u>
	6634721 SGAGGAAAGC CTATGCCACT GTTGGC <mark>G</mark> TGT ACAATGGCGA TTATGTTCTG TACCTGTAAC GGCTATTTGC AAAGGAGATA 6634801 CTTGAGCCAT TGTGCAGTGT ATGCTGATGA CTGGGTAACA GATCCCCGTT TTCTAATAGG TGAGTGTCCA CAGCAGTGAA
search	6634881 CICCECCTTE FICACATCAT TECTTIFATA TEGATEFICCC AETEETTICE AATEAGAAAAE TCCAAECTTC CTETEAGAAC
	6635041 TEACECAEGET ECTEGECACC TTCCCCCCCA CEGECAEGECA CTEAAECACA GETECCTEET CAEGCCAAEA ACCCAAAAAT
	6635121 AGCAGTGGGC TGTAGCAGAA TGAGCAGGGA CTAS-JSTOB7474:G/A CACTCATT GACCACATAA TCTCCTGCGG 6635201 TTCCTTCCAT GACATGAGGA AGACCCAGAC TOUGTTHOLT TCCTHCHGTG CHGCTTCTGT GATTCTATGA ACTTGAATCA
	6635281 ACTITAGGE CTATGAAGET GTEGAATITE TETATEGEA CAGETAATG TGAATTAATG TACATITECA ACCECTAATT
	663361 WINNETTEE WAGTEENNG CHNNNN GWN WATHNAMGEN CEFFENNAM THEFGENNG MGENTWARK WENNEGETE 6635441 TEGETEGETE CAGTEGETEA CACTETAATE CTAGEACTET GEGAGGETEA GETEGEGAGA TGACTEGAAT CCAGGAGTEC
	6635521 AAGACCAGCC TGGGCAACAT GGCGAAACTC CAGCTCTACA AAAAATACAA AAACGTAGCT GGGCATGGTG ACACGCACCA 6635601 TGGTCCCAGC TTACTCAGAG GCACTGAGGT GGGAGGATCA CCTGAGGCCA GGAGAATCAAG GCTGCAGTAA GCCATGATTG
	6633681 TECCACTECE TTCCAECCTE GETGACAGAE TEAGACTCTE TCTCAAAAAA AAAAAAAAAA AAAACTCAEG GATCTTATAT
	Polymorphics (Insertion/Delation)
	Exon (Hasked Exon)
	. Repeat
	select sene regions of exon indicated by highlight.
	Gene Information
	Louis Link ID 1 CTIE
	Gene Name : steroid-5-alpha-reductase, alpha polypeptide 1 (3-oxo-5 alpha-steroid delta 4-demydrogenase
	Gene symbol : SRO5A1 Product : steroid-5-alpha-reductase 1
	Chr : 5 Eutocenetic : Sp15
	0MIM : <u>184753</u>
	Relation to gene sources
	No Database ID Type Gene In Gene Region LocusLink ID JSNP ID
	1 <u>NM 001047.1</u> mRNA <u>SRD5A1</u> CDS#3 6634693 6634859 <u>6715</u> <u>IMS-JST087475</u>
	2 <u>NM_001047.1</u> nRNA <u>SRD5A1</u> intron®3 <u>6616721</u> <u>6634682</u> <u>6715</u>
	3 NM 001047.1 nRNA SRD5A1 intron%3 6634660 6638928 6715 IMS-JST087474
	IMS-JST182150
	4 <u>Hs.552</u> mRNA <u>SRD5A1</u> exon#3 6634693 6634859 <u>6715</u> <u>IMS-JST087475</u>
	5 <u>Hs.552</u> mRNA <u>SRD5A1</u> intron03 6616721 6634682 <u>6715</u>
	6 Hs.552 mRNA SRD5A1 intron®3 6634860 . 6638928 6715 IMS-JST02/151 IMS-JST02150

The Future?

