Brown Allylation and Crotylation Reactions

Reviews:

Srebnik, M.; Ramachandran, P. V. Aldrichimica Acta 1987, 20, 9.

Roush, W. R. In *Comprehensive Organic Synthesis*, Trost, B. M.; Fleming, I., Eds., Pergamon Press: New York, **1991**, *Vol. 2*, pp. 1-53.

Synthesis of B-Allyldiisopinocampheylborane

- Prolonged incubation at 0 °C affords enantiomerically enriched Ipc₂BH. This is due to equilibration of tetraisopinocampheyldiborane with α-pinene and triisopinocampheyldiborane; the symmetrical dimer crystallizes preferentially.
- Both enantiomers of α -pinene are commercially available and inexpensive.
- *B*-Allyldiisopinocampheylborane can be prepared and used *in situ* after filtration of the magnesium salts produced during its formation.

Brown, H. C.; Desai, M. C.; Jadhav, P. K. J. Org. Chem. 1982, 47, 5065-5069.

Brown, H. C.; Singaram, B. J. Org. Chem. 1984, 49, 945-947.

Jadhav, P. K.; Bhat, K. S.; Perumal, P. T.; Brown, H. C. J. Org. Chem. 1986, 51, 432-439.

Enantioselective Allylboration

R ^O L	H + (–)-lp	c ₂ B	$\xrightarrow{\text{Et}_2\text{O}}_{\text{-78} \rightarrow 23 \text{ °C};} _{\text{NaOH, H}_2\text{O}_2} _{\text{R}}$		
	R	yield (%)	ee (%) ^a	ee (%) ^b	
	CH ₃	74	93	≥99	
	<i>n</i> -C ₃ H ₇	71	86	-	
	<i>n</i> -C ₄ H ₉	72	87	96	
	t-C ₄ H ₉	88	83	≥99	
	C_6H_5	81	96	96	

^aAllylboration carried out without filtration of Mg salts. ^bAllylboration carried out at -100 °C under Mg-salt free conditions.

- The reaction is quite general; the stereochemistry of the addition is the same in all cases examined.
- Lower reaction temperatures (0 \rightarrow -78 \rightarrow -100 °C) lead to increased enantioselectivity.
- Only Mg-salt free reagent can be used at -100 °C because the reactive borane is sequestered by ate complex formation with CH₃OMgBr at this temperature.
- Allylboration of aldehydes is essentially instantaneous at -78 or -100 °C in the absence of Mg salts.

 Allylation of aldehydes proceeds through a chair-like TS where R occupies an equatorial position and the aldehyde facial selectivity derives from minimization of steric interactions between the axial lpc ligand and the allyl group.

Brown, H. C.; Jadhav, P. K. *J. Am. Chem. Soc.* **1983**, *105*, 2092-2093. Brown, H. C.; Bhat, K. S. *J. Am. Chem. Soc.* **1986**, *108*, 5919-5923. Racherla, U. S.; Brown, H. C. *J. Org. Chem.* **1991**, *56*, 401-404.

Asymmetric Isoprenylation of Aldehydes

(

(+)-lpc₂BH + $CH_3 \xrightarrow{CH_3} \frac{THF}{-25 \circ C, 6 h}$ (+)-lpc₂B $CH_3 \xrightarrow{CH_3}$

· Hydroboration of allenes is an efficient method for preparing B-prenyldiisopinocamphenylboranes.

+)-Ipc ₂ B	CH ₃	RCHO, E 78 °C, 1 NaOH, H	Et₂O I2 h; ╋ I2O2	OH ₽ H ₃ C CH ₃
1	R	yield (%)	ee (%)	
	CH ₃	73	91	
	<i>n</i> -C ₄ H ₉	79	92	
	CH ₂ =CH	70	95	
	(CH ₃) ₂ C=CH	85	96	

Brown, H. C.; Jadhav, P. K. *Tetrahedron Lett.* **1984**, *25*, 1215-1218. Jadhav, P. K.; Bhat, K. S.; Perumal, P. T.; Brown, H. C. J. Org. Chem. **1986**, *51*, 432-439.

Methallylation of Aldehydes

(+)-lpc₂BOCH₃ + Li Et_2O (+)-lpc₂B CH_3 H_2O (+)-lpc₂B $-78 \circ C, 12 h;$ R yield (%) ee (%) CH_3 56 90 n-C₃H₇ 54 90 n-C₄H₉ 56 91 t-C₄H₉ 55 90 CH₂=CH 57 92

• The yields for methallylation of aldehydes are generally lower than in simple allylation reactions.

Brown, H. C.; Jadhav, P. K.; Perumal, P. T. *Tetrahedron Lett.* **1984**, *25*, 5111-5114. Jadhav, P. K.; Bhat, K. S.; Perumal, P. T.; Brown, H. C. J. Org. Chem. **1986**, *51*, 432-439.

Diastereoselective Allylboration of Chiral, α -Substituted Aldehydes

• The diastereofacial selectivity of the *B*-allyldiisopinocampheylborane reagent typically overrides any facial preference of the aldehyde for nucleophilic attack.

MISMATCHED:	(–)-Ipc ₂ BCH ₂ CH=CH ₂	94	:	6	(88% de)
MATCHED:	(+)-Ipc ₂ BCH ₂ CH=CH ₂	4	:	96	(92% de)

 Although the stereochemical outcome of the allylboration of aldehydes using *B*-allyldiisopinocampheylborane is typically reagent controlled, this selectivity may be challenged with certain substrates:

Brown, H. C.; Bhat, K. S.; Randad, R. S. *J. Org. Chem.* **1987**, *52*, 319-320. Brown, H. C.; Bhat, K. S.; Randad, R. S. *J. Org. Chem.* **1989**, *54*, 1570-1576.

Chair TS's Produce syn Adducts from (Z)-Crotylboranes and anti Adducts from (E)-Crotylboranes.

(Z)-Crotylboranes

"(E)-crotylborane"

"anti adduct"

· These adducts can be viewed as protected aldol products; "deprotection" is brought about by dihydroxylation/periodate cleavage or by ozonolysis.

Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. 1986, 108, 293-294. Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. 1986, 108, 5919-5923. Roush, W. R. In Comprehensive Organic Synthesis, Trost, B. M.; Fleming, I., Eds., Pergamon Press: New York, 1991, Vol. 2, pp. 1-53.

lpc aldehyde		yield (%) A:B	ee (%)
-	CH₃CHO	75	95:5	90
+	CH₃CHO	72	4:96	92
-	C₂H₅CHO	70	95:5	90
+	C ₂ H ₅ CHO	78	4:96	92
-	CH ₂ =CHCHO	63	95:5	90
-	C ₆ H₅CHO	72	94:6	88

· The crotylboranes are used immediately after decomplexation of methoxide from the ate complex by BF₃•OEt₂ at -78 °C to avoid crotyl isomerization.

"Superbases" for Organic Synthesis

- The "superbase" prepared by mixing *n*-butyllithium and potassium *t*-butoxide (1:1) can metalate hydrocarbons of low acidity, in particular olefins.
- · Allylic methyl groups are much more readily metalated than allylic methylene or methine centers.
- · cis-2-alkenes generally react faster than their trans-isomers.
- The large atomic radius of potassium favors η^3 -bonding in allyl, crotyl and prenyl derivatives:

Schlosser, M. Pure & Appl. Chem. 1988, 60, 1627-1634.

 $R_1, R_2 = H, CH_3$

Schlosser, M.; Stahle, M. Angew. Chem., Int. Ed. Engl. 1980, 19, 487-489.

(E)-Crotylboranes

yield (%)

78

76

70

69

C:D

95:5

95:5

4:96

4:96

90

92

Diastereo- and Enantioselective vic-Diol Synthesis

· Treatment of the crude product mixture with ethanolamine allows for easy removal of the

 ee (%)
 reagent by-product as a crystalline adduct; this is an alternative to oxidative work-up.

 90
 90

 92
 Ipc
 aldehyde
 yield (%)
 E:F
 ee (%)

lpc	aldehyde	yield (%)	E:F	ee (%)
_	CH ₃ CHO	57	95:5	90
+	CH₃CHO	59	4:96	92
-	C ₂ H ₅ CHO	65	96:4	92
+	C ₂ H ₅ CHO	68	5:95	90
-	CH ₂ =CHCHO	63	94:6	88
-	C ₆ H ₅ CHO	72	95:5	90

• Other vinyl ethers may be used, such as methoxymethyl vinyl ether (affording the MOM-protected *vic*-diol).

Brown, H. C.; Jadhav, P. K.; Bhat, K. S. J. Am. Chem. Soc. 1988, 110, 1535-1538.

– CH₂=CHCHO 65 95:5 90 – C₆H₅CHO 79 94:6 88

aldehyde

CH₃CHO

CH₃CHO

C₂H₅CHO

C₂H₅CHO

 The crotylboranes are used immediately after decomplexation of methoxide from the ate complex by BF₃•OEt₂ at -78 °C to avoid crotyl isomerization.

Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. **1986**, *108*, 293-294. Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. **1986**, *108*, 5919-5923.

lpc

_

+

_

+

Roush Allylation and Crotylation Reactions

Roush, W. R. In *Comprehensive Organic Synthesis*, Trost, B. M.; Fleming, I., Eds., Pergamon Press: New York, **1991**, *Vol. 2*, pp. 1-53.

Roush, W. R.; Palkowitz, A. D.; Ando, K. *J. Am. Chem. Soc.* **1990**, *112*, 6348-6359. Roush, W. R.; Halterman, R. L. *J. Am. Chem. Soc.* **1986**, *108*, 294-296.

• The stability of allylboronate reagents permits their purification by distillation. Allyl diisopinocamphenyl reagents cannot be distilled.

- · Enantioselectivities are typically moderate.
- 4A-MS are necessary to achieve the highest levels of selectivity.

Proposed Origin of Selectivity in Tartrate Derived Allylboronate Additions

• The favored transition state is believed to minimize unfavorable lone pair-lone pair interactions.

Roush, W. R.; Walts, A. E.; Hoong, L. K. J. Am. Chem. Soc. 1985, 107, 8186-8190.

Preparation of (E)- and (Z)-Crotylboronate Reagents

- · Crotylboronates are configurationally stable at or slightly above room temperature.
- Tartrate-modified (*E*)- and (*Z*)-Crotylboronates can be stored for several months at –20 °C in neat form or in solution with little noticeable deterioration.
- Competition experiments have shown that (*E*)-crotylboronates react faster with aldehydes than the corresponding (*Z*)-isomers.
- Essentially identical results are obtained with a range of commercially available tartrate esters (CH₃, Et, *i*-Pr).

Roush, W. R.; Ando, K.; Powers, D. B.; Palkowitz, A. D.; Halterman, R. L. J. Am. Chem. Soc. **1990**, *112*, 6339-6348.

Roush, W. R.; Palkowitz, A. D.; Palmer, M. A. J. J. Org. Chem. 1987, 52, 316-318.

M. Movassaghi

M. Movassaghi

OH

OH.

C B1	H + Sn(n-E)	3u) ₃	(<i>S</i>)-(–)-BINOL (1 Ti(O <i>i</i> -Pr) ₄ (10 u 4Å-MS	0 mol%) mol%)	
ı			CH ₂ Cl ₂ , –20	O°C	
	R ₁	R ₂	time (h)	yield (%)	ee (%)
	C_6H_5	Н	70	88	95
	C_6H_5	CH_3	60	75	91
	<i>c</i> -C ₆ H ₁₁	Н	70	66	94
	<i>c</i> -C ₆ H ₁₁	CH_3	48	50	84
	(<i>E</i>)-C ₆ H ₅ CH=CH	Н	70	42	89
	(<i>E</i>)-C ₆ H ₅ CH=CH	CH ₃	12	68	87
	C ₆ H ₅ CH ₂ CH ₂	н	70	93	96
	C ₆ H ₅ CH ₂ CH ₂	CH_3	40	97	98
	<i>i</i> -C ₃ H ₇	Н	70	89	96
	furyl	н	70	73	96
	furyl	CH₃	12	99	99
	p-CH ₃ OC ₆ H ₄	CH₃	48	61	93
	p-CH ₃ OC ₆ H ₄ CH ₂ OCH ₂	н	70	81	96
	BnOCH ₂	Н	60	84	95

• Addition occurs to the *re* face of the aldehyde with the catalyst prepared from (*R*)-(+)-BINOL.

• This procedure allows for the efficient asymmetric methallylation of aldehydes, typically a difficult transformation.

Keck, G. E.; Krishnamurthy, D. Org. Syn. 1998, 75, 12-18.

Keck, G. E.; Tarbet, K. H.; Geraci, L. S. J. Am. Chem. Soc. 1993, 115, 8467-8468.

Keck, G. E.; Krishnamurthy, D.; Grier, M. C. J. Org. Chem. 1993, 58, 6543-6544.

Enantioselective Allylation Using a Stoichiometric Chiral Controller Group

- Reagent 1 is produced from the corresponding (*R*,*R*)-bis-sulfonamide by reaction with BBr₃ in CH₂Cl₂.
- Transmetallation of allyltin reagents with the chiral *B*-bromoboron reagent **1** in toluene is complete in 3-20 h.
- The (*R*,*R*)-bis-sulfonamide can be recovered from the reaction mixture.

Corey, E. J.; Kim, S. S. Tetrahedron Lett. 1990, 31, 3715-3718.

Enantioselective Allyltitanation of Aldehydes

Diastereoselective Allyltitanation of Chiral Aldehydes

- The chiral diol is readily available in both enantiomeric forms from the corresponding tartrate esters.
- Complex formation is driven to completion by neutralization of HCl with Et₃N, or by removal of HCl by heating.
- The complex may be used in crude form, as prepared in solution, or the complex may be crystallized and isolated.

• (E)-Crotyltitanium reagents are produced from (E)- or (Z)-crotyl anion precursors.

• (E)-Crotyltitanation of aldehydes affords anti products, presumably by a chair-like TS.

• Exceptionally high reagent selectivity is observed in the mismatched allylation of (*R*)-2-phenylbutyraldehyde (90% de) (cf., (–)-lpc₂BCH₂CH=CH₂: 34% de).

reagent	yield		
TiCpL _(R,R)	93	98.1	1.9
TiCpL _(S,S)	95	0.5	99.5
TiCp(Oi-Pr)2	89	37.3	62.7
MgCl	86	55.1	44.9

Hafner, A.; Duthaler, R. O; Marti, R.; Rihs, G.; Rothe-Streit, P.; Schwarzenbach, F. J. Am. Chem. Soc. **1992**, *114*, 2321-2336.

Duthaler, R. O.; Hafner, A.; Riediker, M. Pure & Appl. Chem. 1990, 62, 631-642.

Krische Allylation and Crotylation Reactions:

Hassan, A.; Krische, M. J. *Org. Proc. Res. Devel.* **2011**, *15*, 1236. Han, S. B.; Kim, I. S.; Krische, M. J. *Chem. Commun.* **2009**, 7278.

General Allylation Reaction:

TMBTP = 2,2',5,5'-Tetramethyl-4,4'-bis(diphenylphoshino)-3,3'-bithiophene

• Couplings of primary alcohols or aldehydes with allyl acetate utilizing Ir catalysts generate allylation products without the use of stoichiometric allyl-metal(oid) reagents.

General Crotylation Reaction:

The Ir catalyst **1** (generated *in situ*) undergoes addition to aldehyde **2** via a 6-membered chair-like transition state to generate the Ir^{III} alkoxide **3**. This does not undergo further dehydrogenation as the olefin is thought to occupy a coordination site, blocking β -hydride elimination.

• Ligand exchange with the reactant alcohol (or isopropanol) generates the homoallylic alcohol 4.

The Ir alkoxide **5** undergoes β -hydride elimination to produce the Ir^{III} hydride **6**. Dissociation of the aldehyde **2** produces an Ir^{III} hydride which undergoes deprotonation by the base to provide the Ir^I anion **7**.

Oxidative addition of allyl acetate to 7 regenerates π -allyl Ir^{III} catalyst 1.

To use aldehydes as substrates in lieu of an alcohol, the use of a terminal reductant (isopropanol) is necessary for the catalytic cycle to proceed.

Enantioselectivites are high for both alcohol and aldehyde reactants.

Kim, I. S.; Ngai, M, -Y.; Krische, M. J. *J. Am. Chem. Soc.* **2008**, *130*, 6340-6341. Kim, I. S.; Nagi, M. -Y.; Krische, M. J. *J. Am. Chem. Soc.* **2008**, *130*, 14891-14899.

Anne-Marie Schmitt, Fan Liu

Myers

Bis Allylation and Crotylation of Glycols

.OAc

он он

· Equivalent bis aldehyde counterparts are unstable or unknown.

[lr(cod)Cl]2 (5 mol %)

(S)-CI,MeO-BIPHEP

(10 mol %)

Cs₂CO₃ (40 mol %) 4-Cl-3-NO₂-BzOH (20 mol %)

Dioxane (0.2 M)

90 °C

OH OH

70%, >30:1 dr

>99% ee

Stereochemical Model in Asymmetric Crotolation Reactions:

 Couplings of aldehydes display higher diastereoselectivities than with alcohols, as higher concentrations of aldehyde promote rapid capture of the kinetically formed *trans*-crotyl iridium complex.

- Kinetically formed *trans*-crotyl iridium complex generates the *anti* diastereomer.
- Equilibration to the *cis*-crotyl iridium complex causes erosion in diastereoselectivity.

Kim, I. S.; Han, S. B.; Krische, M. J. J. Am. Chem. Soc. 2009, 131, 2514–2520.

Other allyl donors have been used with alcohols and aldehydes as reactants:

Han, S. B.; Hassan, A.; Kim, I. S.; Krische, M. J. J. Am. Chem. Soc. 2010, 132, 15559–15561.

Asymmetric Allylation Reactions

Leighton Silicon Allylation Chemistry:

Leighton, J. L. Aldrichimica Acta 2010, 43, 3-14.

Background:

 In 2000, Leighton reported an allylation reaction where a Lewis acidic silicon atom is embedded in a strained five-membered ring:

Zacuto, M. J.; Leighton, J. L. J. Am. Chem. Soc. 2000, 122, 8587-8588.

• By incorporating another electronegative element bound to silicon, the reaction takes place at room temperature. With a chiral ligand, the reaction becomes enantioselective:

Kinnaird, J. W. A.; Ng, P. Y.; Kubota, K.; Wang, X.; Leighton, J. L. *J. Am. Chem. Soc.* **2002**, *124*, 7920–7921.

Preparation of AllyIsilane

• Two diastereomers are generated upon complexation with pseudoephedrine, which converge on a common complex prior to allyl transfer:

Berger, R.; Rabbat, P. M. A.; Leighton, J. L. J. Am. Chem. Soc. 2003, 125, 9596–9597.

Enantioselective Addition to Acylhydrazones:

Berger, R.; Rabbat, P. M. A.; Leighton, J. L. J. Am. Chem. Soc. 2003, 125, 9596–9597.

Berger, R.; Duff, K.; Leighton, J. L. J. Am. Chem. Soc. 2004, 126, 5686-5687.

Mechanism:

• A 5-coordinate trigonal bipyramidal silicon species is proposed.

• The strained silacyclopentane increases the Lewis acidity of silicon.

· Aldehydes and acylhydrazones react, but not ketones, aldimines, or ketimines.

Angela Puchlopek-Dermenci, Fan Liu

OCH₃

ĈΗ₃

P

Fast

Angela Puchlopek-Dermenci, Fan Liu

diastereoselectivity.

Asymmetric Allylation Reactions

Vieira, E. M.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2011, 133, 3332–3335.

 High selectivity is observed with aromatic, heteroaromatic, conjugated, and some aliphatic phosphinoylimines. Crotylation reactions proceed with modest yield and enantioselectivity but low

